ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

на диссертационную работу Жигульский Светланы Владимировны «Изучение взаимосвязи между раскрытостью и напряженно-деформированным состоянием трещины на примере трещиноватого коллектора нефти и газа», представленную на соискание ученой степени кандидата технических наук по специальности 25.00.10 – Геофизика, геофизические методы поисков полезных ископаемых

Диссертационная работа Жигульский С.В. посвящена актуальной проблеме геомеханики: выбору корректного критерия реактивации трещин, а также определению раскрытости реактивированных трещин в условиях измененного бурением или разработкой напряженного состояния.

Актуальность диссертационной работы не вызывает сомнения, поскольку вопрос определения условий реактивации трещин, а также оценка их раскрытости напрямую влияют на эффективность разработки трещинных коллекторов. Кроме того, затронутая в исследовании тема может оказаться полезной для определения безопасных условий разработки месторождений, содержащих крупномасштабные трещиноватые структуры или разломы, которые по тем или иным причинам нельзя доводить до реактивации.

Диссертация состоит из введения, четырех глав, заключения, списка сокращений, списка литературы и двух приложений.

Во введении сформулированы цели и задачи исследования, обозначены актуальность и новизна работы, личный вклад автора, приведены защищаемые положения и описана структура диссертации.

В первой главе представлен обзор современного состояния предметной области. В первой части главы описаны основные способы расчета напряженного состояния плоских трещин. Во второй части главы описаны критерии реактивации/разрушения трещин сдвиговым способом. В качестве основных критериев указаны линейный критерий хрупкого разрушения Байерли, критерий сухого трения, а также нелинейный критерий Бартона. На основании литературных данных показаны области применимости и ограничения при использовании каждого из критериев и сделан вывод о том, что критерий Бартона имеет более широкую область применения. Также рассмотрены способы лабораторного определения параметров данного критерия. В третьей части главы рассмотрены основные способы определения напряженного состояния пласта, включая методы оценки главных компонент напряжения, а также их направления в географической системе координат. В четвертой части описано решение задачи Кирша о напряженном состоянии стенки произвольно ориентированной цилиндрической скважины в пороупругом напряженном пространстве. Приведено решение как в полных, так и в эффективных напряжениях. Далее решения задач об определении напряжения в горной породе использованы для расчета напряженного состояния трещин в различной постановке. В пятой части первой главы приведена модель раскрытости трещин Бартона-Бандиса. Модель описывает зависимость раскрытости трещины от нормальных и касательных усилий, приложенных к ее берегам. В этой части, в том числе, проведен достаточно полный анализ существующих способов определения параметров данной модели.

Во второй главе выполнено сравнение прогнозов реактивации трещин при использовании различных критериев при равных свойствах трещины (шероховатости, когезии), выполнен анализ чувствительности критериев к этим параметрам. Далее анализ

переходит в практическую плоскость: на основании данных интерпретации скважинных микроимиджеров проводится сравнение предсказательной способности выбранного критерия реактивации трещин - критерия сухого трения. Для этого интерпретированные трещины классифицируются. Из всего многообразия выделенных классов трещин выделяются флюидопроводящие, для чего привлекается ряд дополнительных гидродинамических и геофизических исследований скважин. Результаты прямой интерпретации сравниваются с результатами моделирования состояния трещин по критерию сухого трения. Показано, что результат в целом соответствует результатам интерпретации скважинных данных, что подтверждает работоспособность критерия сухого трения. Далее приведены описания двух подходов к оценке коэффициента трения по данным скважинных исследований. Первый подход основан на выявлении зависимости коэффициента продуктивности от результирующего напряжения (FVAL), испытываемого трещиной. Приведен пример практического применения подхода, в результате которого были построены две характерные для месторождения зависимости. Во втором подходе проведена оценка диапазона изменения коэффициента трения на основании скважинных данных о трешиноватости. Полученные значения коэффициента трения используются для оценки активности трещины. Кроме того, в этой части выполнено построение зависимости коэффициента продуктивности от нескольких параметров. На основании анализа данных показано, что наиболее значимыми параметрами для построения корреляции являются мощность интервала, содержащего критически напряженные трещины, а также количество таких трещин.

В третьей главе представлены результаты работы по сопоставлению модели Бартона-Бандиса и реальных данных о раскрытости трещин. Основанием для расчета раскрытости являются такие параметры, как шероховатость, предел прочности на сжатие материала стенок трещины, напряжения, действующие на берега трещины и остаточный угол трения. Остальные требуемые параметры рассчитываются по эмпирическим зависимостям. В работе приведен анализ чувствительности модели к входным параметрам. Показано, что наиболее значимым является параметр шероховатости. В том числе, при моделировании напряженного состояния участка месторождения с трещинами различной ориентации показано, что увеличение шероховатости приводит к увеличению жесткости трещин, а, следовательно, к уменьшению влияния трещин на напряженнодеформированное состояние в своей окрестности. При этом увеличение шероховатости приводит к увеличению сопротивления сдвигу. Численные эксперименты также показали, что значимая гидравлическая раскрытость проявляется при значениях шероховатости более или равной 10 при прочих равных условиях численного эксперимента. В целом сделан вывод о том, что результаты моделирования с использованием критерия Бартона-Бандиса не противоречат экспериментальным данным о гидропроводности трещин.

В четвертой главе представлен алгоритм и программная реализация модуля для оценки реактивации и степени раскрытости трещин в околоскважинном пространстве. Алгоритм основан на расчете напряженного состояния на стенке скважины и в околоскважинном пространстве и последующем применении критерия Бартона для оценки области реактивации заданных трещин. Далее на основании модели Бартона-Бандиса производится оценка раскрытости реактивированной части трещин. При помощи модуля было произведено сравнение результатов работы двух критериев: критерия сухого трения и критерия Бартона. Показано, что степень различия в одном конкретном примере составляет значимую величину в 8-12 градусов. Использование сравнения результатов

моделирования с результатами интерпретации акустического микроимиджера позволяет использовать модуль в качестве инструмента калибровки модели напряженного состояния пласта. Многовариантное моделирование, выполненное с использованием модуля, также позволило сделать вывод о том, что наибольшей раскрытостью при заданном напряженном состоянии будут обладать трещины с большей шероховатостью. Дополнительно приведено несколько примеров с оценкой раскрытости трещин в вертикальной и горизонтальной скважине, а также показана чувствительность результатов расчета к давлению в скважине и величине шероховатости.

Основным результатом диссертационной работы является разработанный автором новый способ оценки критически напряженного состояния и раскрытости системы трещин в околоскважинной зоне с применением методов геомеханического моделирования. Кроме того, стоит отметить проведенные автором параметрические исследования по определению наиболее важных для построения модели параметров трещин и степени их влияния на результат.

Практическое применение разработанного автором подхода продемонстрировано на нескольких примерах. Путем сопоставления данных моделирования с данными практических исследований показана хорошая прогнозная способность разработанного способа как на примерах уровня скважин, так и на примерах уровня участков месторождения.

Выводы диссертации основаны на полученных результатах и являются новыми. **Обоснованность защищаемых положений и выводов** обеспечивается результатами сравнения с экспериментальными данными. Все материалы, привлеченные автором из других источников, сопровождаются корректными ссылками.

Вопросы и замечания:

- 1. При записи критерия прочности Бартона отсутствует ограничение сверху предельный угол внутреннего трения, выше которого эта величина в природе не встречается (стр. 8 автореферата). В исходной работе Бартона предельный угол внутреннего трения присутствует. Как следствие, на рисунке 2 (стр. 11 автореферата) в небольшой области около нуля критерий Бартона показывает значения коэффициента трения существенно выше критерия Байерли, который в свою очередь должен быть ограничением сверху.
- 2. При анализе зависимости коэффициента продуктивности от результирующего напряжения были получены две разные зависимости. Однако в работе нет обсуждения причин появления двух совершенно разных по характерным параметрам зависимостей.
- 3. В части 4 остается неясным, выполняется ли расчет напряжений в околоскважинной области или только на поверхности стенки? Использование расчета в околоскважинной области может позволить оценить не только раскрытость на стенке скважины, но и пространственное распределение раскрытости на расстоянии от скважины. Такой анализ был бы так же весьма полезен при анализе гидропроводности прискважинной области.
- 4. При сопоставлении картины существующих трещин и результатов моделирования было бы интересно добавить численную оценку корреляции полученного модельного изображения с действительным изображением.

Сделанные замечания не умаляют достоинства полученных соискателем результатов и общего уровня исследования. Диссертация выполнена на высоком научном уровне и оформлена в соответствии с требованиями ВАК. Следует также отметить, что в работе серьезное внимание уделяется критическому отношению к полученным результатам, указываются ограничения применимости предложенного подхода, что говорит о хорошем понимании всех аспектов изучаемой проблемы.

Результаты исследования в полной мере представлены в печати, они опубликованы в **10** работах, в том числе **2** статьи в журналах, включенных в список ВАК, а также рядом публикаций материалов международных и российских конференций, в том числе, индексируемых в SCOPUS.

Диссертация является актуальным, логичным, в полной мере законченным исследованием, имеющим как научную, так и практическую значимость. Выводы диссертационной работы обоснованы и достоверны. Автореферат и научные публикации в полной мере отражают ее содержание.

Диссертационная работа Жигульский Светланы Владимировны «Изучение взаимосвязи между раскрытостью и напряженно-деформированным состоянием трещины на примере трещиноватого коллектора нефти и газа» соответствует требованиям ВАК, предъявляемым к кандидатским диссертациям, а ее автор Жигульский Светлана Владимировна заслуживает присуждения ученой степени кандидата технических наук по специальности 25.00.10 — Геофизика, геофизические методы поисков полезных ископаемых.

Официальный оппонент

Федоров Александр Игоревич, кандидат физико-математических наук, эксперт аналитического отдела корпоративного института ООО «РН-БашНИПИнефть» в составе ПАО «НК «Роснефть».

Адрес: 450006, г. Уфа, ул. Ленина, д. 86/1.

Телефон +7(919) 152-28-70, адрес электронной почты: fedorovai-ufa@bnipi.rosneft.ru

Я, Федоров Александр Игоревич, подтверждаю свое согласие на обработку персональных данных и включение их в документы, связанные с работой диссертационного совета.

11 августа 2022 года

А.И. Федоров

Подпись А.И. Федорова заверяю

Подпись <u>Рестора</u> заверню, Начальник отдери обеспечения пероризиры 10.В. Сородина

PH 10607